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Foreword

In his 1985 presidential address to the American Finance Association, entitled
“Of Financial Innovations and Excesses,” James Van Horne outlined the
differences between success and failure for any new product or service
introduced into the capital markets. A genuine innovation, Van Horne noted,
“must make the markets more efficient in an operational sense [or] more
complete.” Conversely, he defined financial excesses as “things labeled
financial innovations [that] have little or no substance when we peel away the
veneer, other than to their promoters.” From success stories such as zero-
coupon bonds and asset securitization programs to ill-fated ventures such as
unbundled stock units, the past 20 years of market history have been witness
to an abundance of both innovation and excess.

Fewwould question placing interest rate swaps in the innovation category.
Indeed, the swap market has risen from its origins in the early 1980s to a point
at which the outstanding notional principal is now counted in the tens of
trillions of dollars. Furthermore, the swap product is truly global, with end
users frequently demanding cash flows denominated in any of several differ-
ent nondollar currencies. As summarized in Interest Rate and Currency Swaps:
A Tutorial, a 1995 Research Foundation monograph, the fundamental reason
for this rapid acceptance is that swap contracts provide an efficient way for
corporations to mitigate their unwanted exposures to often-volatile move-
ments in interest rates. Put more simply, swaps have become extraordinarily
popular because they help companies solve problems cheaply and quickly.

The marketing effort that accompanied the introduction of swap contracts
is now several years old and, one would have to concede, has done a remark-
able job of acquainting potential customers with the product’s myriad benefits.
Furthermore, recent trading debacles (e.g., Procter & Gamble, Barings Bank,
Bank of New England) have made financial market participants acutely aware
of two of the more prominent risks involved with these contracts: price risk
and default risk. In this monograph, Robert Brooks documents another cost
of using swaps that heretofore has received little attention, namely, the
possibility that some end users of these arrangements are consistently paying
more than others. An interesting aspect of this finding is that swaps, which
are simply packages of forward contracts, require no explicit front-end premi-
um payment, so establishing this result requires a more subtle approach than
simply comparing market prices with theoretical values.

©The Research Foundation of the ICFA vii
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Brooks’ argument goes something like this: The plain vanilla form of
interest rate swap requires counterparties to exchange cash flows on a peri-
odic basis, with one of those payments tied to a fixed interest rate and the
other adjusted to changes in a variable reference rate (e.g., the London
Interbank Offered Rate). Thus, at the time the swap is originated, the uncer-
tainty over future rate conditions means that neither end user—the one
making the fixed-rate payment or the one receiving it—knows exactly whether
the cash exchanges will balance out over the life of the agreement. Standard
textbook treatments of these contracts often argue that they are zero-sum
games, meaning that the fixed rate is negotiated so as to be an average of the
sequence of future variable rates that is expected at the time of the initial
negotiation. What if, however, supply and demand conditions dictate other-
wise? We know, for example, that five out of six corporate users of swaps
choose the pay-fixed side of the deal. So, is it possible that these participants
consistently commit to a series of fixed-rate payments that end up being larger
than the floating-rate receipts?

Brooks documents that such is indeed the case. He interprets this result
as being consistent with the existence of a significant risk premium in the
swap market, defined as the difference between the current swap rate and an
average of the expected future variable rates. In the process of developing his
empirical analysis, Brooks also provides us with another valuable service.
Specifically, his work includes a user-friendly survey of the more prominent
theories and equilibrium models of the interest rate term structure, with a
special primer on the notion of arbitrage-free modeling in finance. Even those
readers with no direct involvement in the swap market are likely to find this
section of Brooks’ work to be quite useful.

Producing compelling research about derivatives contracting is always
subject to two difficulties. First, the topic tends to be challenging quantitatively
for those without day-to-day exposure to these products. Second, because
derivatives are often traded in nonpublic venues, the kinds of data necessary
to deduce the market’s behavioral fingerprints are often difficult to obtain.
Brooks has been able to traverse both of these hurdles, and the result is a
study that helps to establish a solid technical foundation for understanding
these important instruments. This monograph is interesting and useful, and
the Research Foundation is pleased to be able to publish it for your enjoyment.

Keith C. Brown, CFA

Research Director

The Research Foundation of the

Institute of Charterved Financial Analysts
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interest Rate Modeling and the Risk
Premiums in Interest Rate Swaps

The focus of this research is on improving understanding ofthe consequences
of using interest rate swap contracts, as well as related contracts. Interest rate
swaps are widely believed to be basically a “zero-sum proposition,” meaning
that sometimes you win and sometimes you lose.! That is, over long periods
of time, the impact of interest rate changes nets out. Thus, entering an interest
rate swap does not change the expected return; rather, it changes only the
resulting risk profile.

The purpose of this research is to examine, both theoretically and empir-
ically, the expected-return consequences of entering an interest rate swap or
other interest rate derivative contract. For example, on average, does a
receive-fixed interest rate swap result in net receipts or net payments? If net
receipts (as anecdotal evidence suggests), how large are these receipts em-
pirically? That is, what is the historical average dollar return on a receive-fixed,
pay-floating interest rate swap? How do the net receipts change for different
interest rate swap maturities?

implications for Practicing Financial Analysts
The research described in this monograph is vitally important for several
reasons. First, it will expand the general understanding of interest rate swaps.
An investor may be able to use a swap to convert a floating-rate debt to a fixed-
rate debt, thus reducing the portfolio’s risk profile and increasing the expected
return {(this result would obviously depend on the investment horizon). Thus,
this research will improve investors’ ability to analyze the risk—return trade-
off involved with interest rate swaps.

Second, financial managers will be better able to assess the benefits and
costs of converting floating-rate debtto fixed and vice versa. Barclay and Smith

IDerivatives, by their very construction, have an overall payout of zero, meaning that if
one side loses a certain amount, then the other side gains that amount. In keeping with this
view, derivatives are considered zero-sum propositions. In this menograph, we focus on only
one side: the receive-fixed-rate side of an interest rate swap.

©The Research Foundation of the ICFA 1
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(1995) observed that, for the industrial corporate sector between 1974 and
1992, 36.6 percent of corporate debt had a maturity exceeding five years and
more than 50 percent had a maturity exceeding three years. In part, this
research will help corporate executives evaluate the economic consequences
of issuing either long-term fixed-rate debt or floating-rate debt. They will be
able to compare the cost of fixing their borrowing rate as opposed to having
a floating rate.

Third, security analysts will be better equipped to assess the advantages
and disadvantages of a particular corporation’s debt policy. The economic
costs of decisions related to debt maturity policy are important to stock price
performance. Goswami, Noe, and Rebello (1995) reported that the use of debt
financing has more than doubled over the past 50 years and the ratio of long-
term debt to long-term capital has more than tripled.?

Fourth, investment bankers will be better equipped to advise clients
regarding the benefits and costs of various debt strategies. For some corporate
executives, the idea of issuing floating-rate debt borders on high-stakes
gambling, This study may help investment bankers persuade corporate exec-
utives that their debt maturity decisions involve economic trade-offs. One
objective is to help quantify the historical cost of issuing fixed- rather than
floating-rate debt.

Fifth, based on empirical evidence presented in this study, interest rate
swap dealers can examine the cost of running a completely hedged book.
Perhaps over the long run, being slightly long the bond market (receiving
fixed) might prove very beneficial.

In the next section, we review the theoretical underpinnings of interest
rate contingent claims pricing. Specifically, we survey the various term struc-
ture theories and review general equilibrium term structure models. We
develop the notion of arbitrage-free modeling and apply it to interest rate
swaps. After examining in detail various arbitrage-free interest rate models,
we contrast pricing interest rate swaps with actually applyving them in interest
rate risk management.

In the third section, we develop an arbitrage-free interest rate model
explicitly incorporating a risk premium. We build upon the Black, Derman,
and Toy model (1990) using a five-year observation period. We focus on how
risk-neutral valuation is distinctly different from assuming unbiased expecta-
tions. This section provides the framework for assessing the empirical evi-
dence in the fourth section.

This evidence was based on the work of Masulis (1988).

2 ©The Research Foundation of the ICFA
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The last section, in which we examine daily Eurodollar futures data from
October 21, 1986, through March 29, 1996, is an effort to assess the economic
consequences of using interest rate swaps. We found considerable evidence
supporting a dissipating risk premium.

interest Rate Contingent Claims Pricing Models

Interest rate contingent claims models are directly linked to the term structure
of interest rates. The term structure of interest rates is the relationship
between yield and maturity for similar bonds. Accurately modeling and
interpreting the term structure has captured the attention of many people
during the years. Models that have been used to value interest rate contingent
claims span from a direct application of the standard Black-Scholes option-
pricing model to a multivariate simulation with thousands of paths. (For a
review of valuation of interest rate swaps, see Brown and Smith 1995.) The
model of the term structure that we ultimately adopt is a pragmatic blend of
simplicity and realism. The model needs to be logically consistent, but value
is placed on simplicity.

Term Structure Theories. Theories about the behavior of the term
structure of interest rates date back at least to Fisher (1896). The unbiased
expectations hypothesis states that forward rates are unbiased predictors of
future spot rates. In this study, the difference between the forward rate and
the expected future spot rate is defined as a risk premium. The local expecia-
tions hypothesis states that similar bonds will provide the same expected return
over the next period regardless of maturity. Culbertson (1957) argued that
supply and demand over different segments of the term structure dictate the
equilibrium yield observed. He found evidence that the holding-period returns
are different for different maturities. This market segmentation hypothesis was
further modified by Modigliani and Sutch (1966), who recognized that if
nearby yvields differ sufficiently, participants will change maturities. This
theory became known as the preferred habitat hypothesis.

Meiselman (1962}, using an error-learning model, affirmed Fisher’s unbi-
ased expectations hypothesis based on empirical data. Brooks, Kim, and
Livingston (1993), however, challenged the link between error learning and
the unbiased expectations hypothesis. They found evidence of error learning
but rejected the unbiased expectations hypothesis. Hicks (1946) asserted that
because of a liquidity premium, forward rates should be biased high.

Most prior studies have documented that forward rates are biased predic-
tors of future spot rates (see, for example, Brooks, Levy, and Livingston 1995;
Levy and Brooks 1989; and Fama (1976a, 1976b, 1984a, 1984b). Engle and Ng

©The Research Foundation of the ICFA 3
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(1993) applied a factor ARCH (autoregressive conditional heteroscedasticity)
model to U.S. Treasury bills and found that the premium embedded in forward
rates is a function of interest rate volatility. They concluded,
Adjusting the forward rate for the volatility-related forward premium can
improve its performance as a predictor for [the] future spot rate. Thus,
volatility-based premium adjustments are an important ingredient in deter-
mining the term structure of interest rates.
Most prior studies focused on U.S. Treasury data and very short maturities.
Here, we focus on London Interbank Offered Rate (LIBOR) data and
maturities of up to two vears. LIBOR is the variable interest rate commonly

used in interest rate swaps.

General Equilibrium Term Structure Models. Merton (1974) intro-
duced the idea of a general equilibrium term structure model by assuming
that zero-coupon bonds follow a specific stochastic process. Since Merton's
work, many authors have extended the idea of a general equilibrium term
structure framework. Vasicek (1977) assumed that the spot interest rate
follows a diffusion process. Dothan (1978) assumed that the spot interest rate
follows a geometric Wiener process. Richard (1978) focused on inflation risk
by modeling the real rate and the inflation rate. Brennan and Schwartz (1977,
1979) introduced a term structure model based on a stochastic short rate and
a stochastic long rate.

Langetieg (1980) used a multivariate stochastic process to model the term
structure. Cox, Ingersoll, and Ross (1981) reexamined the basic theories of
the term structure and found theoretical justification for the local expectations
hypothesis. They asserted that holding-period returns for similar bonds with
different maturities should be the same. This result, however, hinges on the
ability to hedge various maturity bonds costlessly and dynamically.

Rendleman and Bartter (1980) used a binomial setup to model interest
rate uncertainty and derive valuation methodologies for interest rate contin-
gent claims. Courtadon (1982) assumed a mean-reverting, proportional model
of the short rate and derived various partial differential equations whose
boundary conditions drive the resulting valuations. Using a square root
process for short rates, Cox, Ingersoll, and Ross (1985b) derived an intertem-
poral general equilibrium term structure model. Longstaff and Schwartz
(1992) assumed a two-factor general equilibrium model based on the short
rate and the volatility of the short rate.

Equilibrium models typically start with assumptions regarding the be-
havior of some basic economic variables. For example, Cox, Ingersoll, and

4 ©The Research Foundation of the ICFA
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Ross (1985a,b) assumed a single good economy with linear production
opportunities and stochastic development of technology. With this general
equilibrium, they derived the stochastic process of interest rates as

dr = (8 -r)dt+c.rdz,

where 6 is the central location or long-term value, 7is the current spot rate, x
is the pull parameter that governs the speed at which the spot rate is drawn
back to the long-term value, ¢ is the measure of rate volatility, df is a small
change in time, and dz is the standard one-dimensional Wiener process. Other
authors have started with an assumption on the behavior of spot interest rates.

Equilibrium models suffer from several weaknesses. First, the adopted
model may not match the current term structure and, hence, will fail to explain
observable prices. Second, equilibrium models require an explicit accounting
for the current market price of risk. The arbitrage-free approaches are able to
use current market prices; thus, they avoid resorting to ascertaining the
market price of risk. Current market prices have the market price of risk
already embedded in them.

Arbitrage-Free Modeling. Many single-factor models of spot interest
rates use standard arbitrage arguments. Each model takes as a requirement
the ability to replicate current prices. Typically, the assumption is that a set of
zero-coupon bond prices is observable, although one could just as easily start
with a set of forward rates or par bond yields. Also, the stochastic variable is
usually taken to be the current spot rate {although this condition is not
necessary). All of the models take as their continuous time limit a linear
stochastic differential equation of the general form (assuming modeling spot
rates)

dr=u{r)dt+ oz dz

where p (7,9 is the drift term and o (7,f) is the volatility term. The no-arbitrage
condition is equivalent to claiming the existence of a probability measure such
that the local expectations hypothesis holds. Ritchken (1996) summarized this
assertion as follows: “. . . for an arbitrage-free process of bond prices to exist,
it must be the case that a probability measure exists such that the local
expectations hypothesis holds with respect to that measure.” That is, there
exists a probability, ¢, such that the expected future zero-coupon bond value,
discounted at the current spot interest rate, is equal to the current bond price.

In an effort to explain these models precisely, we introduce highly specific
notation. Suppose a given time period is split into intervals of length #(s)— that

©The Research Foundation of the ICFA 5
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is, time step, expressed as a fraction of a year. A time line with points in time
and time steps noted is shown below:

Points in Time 0 1 2

i ! |
| | i

Periods of Time 1 2 3

The uncertainty represented by a stochastic process will be modeled with a
binomial lattice framework. Let
P}T) = azero-coupon, default-free bond paying $1.00 at 7, observed at
t, given that we are at state ¢
g = the risk-neutral probability that rates will rise, observed at ¢,
given state {

—1- W

7i(1) = the continuously compounded spot interest rate (one-period
rate), observed at ¢, given state ¢

ftG.k = the forward rate for periods between j and k (f < k), observed
at ¢, given state 7

FiG,k) = theforward price for a bond at point in time 7, maturing at point
in time &, observed at ¢, given state ¢

M = the value of a money-market account (a deposit earning at the

one-period spot rate), observed at ¢, given state ¢, starting with
$1.00att=0

The value of the money market account is $1.00 grossed up by the interest
earnings in the account, given the particular rates observed. That is,

t .
- 200

j=0

We assume throughout that quoted interest rates are compounded

continuously unless otherwise explicitly noted.
With this notation, we know the relationship between forward rates and

forward prices (assuming $1.00 par) is

FiGk = expl G Ryts (-]

Zero-coupon bonds can be expressed in terms of forward rates or forward
prices as

T-1
PUT) =exp|—ts 2, f (G, j+1 )}
j=0

6 ©The Research Foundation of the ICFA
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T-1
Pl =T1F/'Gj+ 1.
Jj=0
As an example, suppose we observe the following spot rate and forward rates
att=0:

Q) = 5.0%
£1,2) = 5.25%
£923) = 5.30%

Assuming one-year time steps, we compute the zero-coupon bond prices as

PO = exp(-0.05) = S0.9512294
P2y = exp(-0.05-0.0525) = $0.9025781
PP = exp(-0.05-0.0525 - 0.0530) = $0.8559871.

The current single-period forward prices are
F(1,2) = exp(-0.0525) = $0.948854
F2(2,3) = exp(-0.0530) = $0.9483800.

In practice, the zero-coupon prices are typically used as inputs, and then
forward rates and forward prices are computed.

At this point, we need a method of introducing uncertainty while making
sure that the model does not permit riskless arbitrage. Most practical appli-
cations of single-factor models rely on a lattice approach to representing the
uncertainty of future rate movements and focus primarily on a binomial tree
{two arcs at each node). No unique way exists to represent the up- and down-
arcs along with the probabilities of each event; rather, the binomial model can
be implemented in multiple ways. To achieve the appropriate limits, the up-
jump, down-jump, and probability of the up-jump are expressed as®

u= exp[ﬁl(ts) +(L/Ts]
d = exp,:rh(ts) - O'A/Ef]
| .
In the limit, as the time step goes to zero, the parameters will converge to the

mean () and standard deviation (o) for any choice of /. If we choose u = 7,
the probability will always be one-half. This choice, however, is strictly

3We assume here that 6(r,#) is of the form o ().

©The Research Foundation of the ICFA 7
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arbitrary. Some of the original work on the binomial model assumed & = 0.
(For more details, see Nawalkha and Chambers 1995.)

Figure 1 illustrates the binomial approach to modeling spot rates. Every
effort is made to assure that the tree recombines, that is, an up-move followed
by a down-move results in the same rate as a down-move followed by an up-
move. A nonrecombining tree {called a bushy tree or an exploding tree)
quickly becomes unwieldy because the number of observations grows at a
rate of 2*, where » is the number of time steps. A recombining tree grows at
a rate of # and, hence, remains tractable.

Figure 1. The Binomial Appreoach to Modeling Spot Rates
t+2
1+2 (1)

t+1 (1)

() < 1)
o <

In a binomial setup, the state can be represented by the number of up-
moves, denoted here as 4. The first arc going up shows 7 going to i + 1 as we
move fromtime tto £ + 1. Alternatively, the first arc going down shows ¢ staying
the same and, hence, implicitly going down. Because this tree is a binomial
one, the arc must go either up or down.

Through careful selection of parameters, the spot rate two periods out will
be the same whether the path followed went up then down or down then up. At
times, however, this procedure is not acceptable (for example, when the secu-
rity is highly path dependent, such as with some mortgage-backed securities).

A large number of results—the spot rate, forward rates, and forward
prices—can be derived with zero-coupon bond prices alone. With zero-coupon
bonds, the yield to maturity, y(#), is the rate that solves the following equation:

P(n) = $1.00 exp[-ny(n)1,

8 ©The Research Foundation of the ICFA
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or

In[$1.00/P(n)]
yiny=——,— .

Using the prices so computed, we have

In[$1.00/$0.9512294 ]

yn = T = 5.0%
1n[$1.00/$0.9025781

¢ (2) = LBLOOSS L 51054
In[$1.00/$0.8559871

y9(3) = n($ $3 L - 51833%.

We can also compute the equilibrium swap rates.

Interest Rate Swaps. Interest rate swaps are essentially a portiolio of
forward rate agreements. Loosely, the value of a receive-floating, pay-fixed
interest rate swap is

= NAD; . .
Viwap = NP Pi'(j + 1)( NTD J[rifd (Jj+ 1)—rﬂ-md’d].
j=0
NP is the notional principal determining the cash amount of the coupon
payments. NAD is the number of accrued days in the settlement period, and
NTD is the number of total days in the year. The last, bracketed term is the
difference between the floating spot rate and some predetermined fixed swap
rate. The subscript 4 denotes discrete compounding. The floating interest rate
is unknown.

The current market rate for converting an uncertain future floating rate
to aknown fixed rate comes from nothing more than a forward rate agreement
or futures contract.* Hence, the appropriate value of an interest rate swap,
Vsuap can be found by substituting the forward rate for the floating rate; that is,

n-1
NAD. ,
t, . 1 i PR
szap = NPZP[ (.] + 1)[ NTé+ }[fl,d (]’]+ l)urfixed’d]'
j=0

Although swaps can be structured in a wide variety of ways, typically they
are settled in arrears (one period later) on a cash flow basis. Hence, the rates

4Spme well-documented differences exist between forward rates and the rate implied by
futures contracts. See, for example, Burghardt and Hoskins (1994, 19952, 1995b).

©The Research Foundation of the ICFA 9
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used to compute swap payments are discretely compounded. Solving for the
fixed rate, 7,4 4, that makes the current swap value zero gives

n-1

NAD:.,,
PG+ 1)( T )fi,td(i,j+ D
j=0

~

Piﬁxed,d =

oL NAD; 4
The previous data [7,°(1) = 5.0%, £,°(1,2) = 5.25%, and £;°(2,3) = 5.30%] are converted
to annual compounding (typically swap contracts require matching actual
interest cash flows, not quoted interestrates). Hence, assuming annual periods,
5.0 percent becomes 5.1271 percent; that is, exp(?) — 1 = exp(0.05) - 1.5 The
equilibrium fixed swap rates, forward rates, and yield to maturity (based on an
annuity), given these data with annual compounding, are presented in Table 1.
Thus, the swap curve lies below the annualized forward curve and above the
annualized yield to maturity for annuities.

Tabie 1. Equilibrfium Swap and Forward Rates and Yields to Maturity

Maturity (years) Swap Rate Forward Rate Yield to Maturity
1 5.1271% 5.1271% 5.1271%

2 5.2552 5.3903 52132

3 5.31452 5.4430 5.2647

#The three-year swap rate is derived as follows:

5.3145% = (50.9512294 x 5.1271% + $0.9025781 x 5.3903% + $0.8559871 x 5.4430%)/(80.9512294
+$0.9025781 + $0.8559871) = 14.4013528/2.7097946.

Review of Arbitrage-Free Models. The economic trade-offs when us-
ing interest rate swaps can be assessed only when we introduce uncertainty
into the analysis. Several methods have been used to model uncertainty on the
term structure. Typically, uncertainty is modeled by a stochastic differential
equation.

The Ho and Lee Model. Ho and Lee (1986) provided one of the first
arbitrage-free models of the term structure. They described their model as “a
relative-pricing modelin the sense that we price our contingent claims relative
to the observed term structure; we do not endogenize the term structure as
Cox, Ingersoll, and Ross [1985b] and Brennan and Schwartz [1977] do.”

SRecall that 1 plus the annual rate must equal the exponential of the continuously
compounded rate for a one-year period.

10 ©The Research Foundation of the ICFA
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Ho and Lee proposed additive, approximately normally distributed shocks
to the term structure. The stochastic differential equation can be expressed as

dr=u({)di + cdz.

The mean of the spot price process, u(f), is selected so as to match exactly
the current term structure. Note that the volatility parameter, o, is in absolute
terms and is not proportional to rate levels (as it is in most stock price models).
Also, the tree automatically recombines because of its additive nature. In a
binomial lattice, the up- and down-jumps are expressed, respectively, as

r+1

ity = H( + ' (es) + 6.5

and

K = )+ R s) - o,

where utis the drift rate (f denotes a point in time, not p raised to a power).

One important feature of interest rate models is internal consistency, or
the no-arbitrage condition. To explain this feature, we introduce the notion of
state claims. In the binomial setup, at each point in time, #, there are z + 1
possible states. A state claim is the present value of receiving $1.00 in a given
state at a given point in time (and receiving nothing else at any other state or
time).

To be internally consistent, it must be that

n
Py (n) = X5¢",
Jj=0

where SC is the current value of receiving $1.00 at #, given that state ; has
occurred. Hence, owning a state claim for each state possible at point in time
n pays $1.00 for sure at #» no matter which state uitimately occurs. Thus, the
sum of the state claims must equal the current zero-coupon, default-free bond
price for a bond maturing at #.

Because g is a risk-neutral probability measure, when # = 1, we know that

SC}
Sch = PY(1)q (rates go up);

Pé) a- qé’) (rates go down),

hence,
SCL+SC! =P () (1 ~¢0) +PY (Vg
=P (D).
@The Research Foundation of the ICFA 11
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When#n>1,

-l

SCy = SCO"_1 P11 - qon—l )(rates always down),
SC, = SC,:I_}I P,zn_]l(l )qnn_]I (rates always up ),

s¢t = sc P mqj"“1)+scjf;l P (1)g"7 (intermediate rates).

In this analysis, we assumed that the risk-neutral probability is constant at
1/2 and appropriately adjusted the up- and down-jumps (recall that this
assumption is arbitrary).

Another way to model the no-arbitrage condition is

PIT) = P()Ig/P (T- 1)+ (1-g"P/ (T- D)1,

An alternative way to express this equation is to introduce relative prices. In
the equation below, the prices have been divided by the value of a money-
market account. On the left-hand side, the value of the money-market
account is $1.00 (assuming ¢ = ), whereas on the right-hand side, the value
of the money-market account is $1.00 grossed up by the interest paid for one
time step [P;#(1)]. Thus, we can express this result as
RAT) = ¢/REN(T-1)+ (1= R (T-1).

The relative price at T'is the expected value (with g probability) of the relative
price in the previous period (T—1). Formally, under the ¢ probability measure,
the relative price is said to follow a martingale. Remember, however, that ¢ is
not the actual probability measure (the actual probability measure is not
unique but varies from investor to investor).

The no-arbitrage condition requires that a two-period bond be equal to the
discounted expected value of a one-period bond one period from now under
arisk-neutral probability measure or that the sum of the state claims equal the
initial term structure. The free variable, given the assumption of equally
probable up- and down-jumps, is the drift rate, p'.

Solving for the appropriate drift term in the previous example, the first-
year drift term is 0.255 percent and the second-year drift term is 0.065
percent, assuming an absolute volatility of 0.01.6 The expected future spot
rates, under the risk-neutral probability measure, are 5.255 percent and 5.32
percent, respectively.” The expected one-period spot prices are $0.948854

5We used the Microsoft Excel (version 5.0) solver routine for these examples.
75.255% = 0.50(6.255%) + 0.50(4.255%), and 5.32% = 0.25(7.32%) + 0.50(5.32%) + 0.25(3.32%).
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and $0.948285, respectively. Figure 2 illustrates the first three points in time
(t=0,1,2) in the binomial lattice based on the Ho and Lee model.

Figure 2. Binomial Lattice Based on the Ho and Lee Model

r} (1) =7.32%
Py (1) = $0.92941

r}(1) = 6.255%
SC 2= $0.223388

P, (1) = $0.939366

rg(1) = 5% SC ! = $0.475615 r/(1)=532%
P2(1) = $0.951229 P(1) = $0.94819
5 ra(1) = 4.255%
SCJ=%1 SC = $0.451289
Py (1) = $0.958343
$C = $0.475615 75(1) =3.32%

Pi(1) = $0.96735
SC2=$0.227901

An alternative way to value swaps is to use caps and floors. Interest rate
caps are derivatives that benefit from rising interest rates. They are a portfolio
of interest rate call options. Hence, the value of an interest rate cap can be
expressed as

I3 ! NADT+[ : TpT T
CAP,' = NP ZO[ 7D ] oSCj PI(1)max[0, rF,(1) - X1,
T= =
where X, is the strike rate and 7 is the point in time when each state is being
evaluated. We assume that the cash flows are settled in arrears, or one period
later, which explains the one-period discounting represented by P (1). For
example, assuming discrete cash flows and a 5.3145 percent strike, a three-
vear cap based on the data from the Ho and Lee method is valued at®

CAP(5.3145%,3—year) = 0.475615(0.939366) (0.064548 — 0.053145) (Time 1, State 1)
+0.451289(0.94819) (0.054641 - 0.053145) (Time 2, State 1)
+0.223388(0.92941) (0.075946 — 0.053145) (Time 2, State 2)
= 0.005095 + 0.000640 + 0.004734
=1.0469% of NP.

8Fig:ure 2 is in continuously compounded rates, and swaps pay based on an annual rate.
Hence, at Time 1, State 1, we have 6.4548 percent = exp(0.06255) - 1.

©The Research Foundation of the ICFA 13
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Notice that the value of the cap is the payoff in each state multiplied by the
state-claims value (without the day-count adjustment NAD/NTD).

Interest rate floors are derivatives that benefit from falling interest rates.
Floors are a portfolio of interest rate put options. Hence, the value of an interest
rate floor can be expressed as

AD 1
FLR)" = NP%[ NTD JE,SC P (1)ymax[0, X~y ()],
A 5.3145 percent strike, three-year floor based on the data from the Ho and
Lee method is valued at

FLR(5.3145%, 3-year) = 1.0(0.951229) (0.053145 ~ 0.051271) (Time 0, State 0)
+0.475615(0.95834) (0.053145-0.043468) (Time 1, State 0)
+0.227901(0.96735) (0.053145-0.033757) (Time 2, State 0)
=0.001783 + 0.004411 + 0.004274
= 1.0468% of NP.

Notice again that the value of the floor is the payoff in each state times the
state-claims value. It is not a coincidence that the values of the cap and the
floor are equal (ignoring rounding error) when the strike rate is 5.3145
percent. Recall that the three-year swap rate is 5.3145 percent. Thus, one way
to value an interest rate swap is as a combination of a cap and a floor with the
same strike rate. Specifically, a receive-fixed, pay-floating interest rate swap is
equivalent to being long a floor and short a cap. Conversely, a receive-floating,
pay-fixed interest rate swap is equivalent to being short a floor and long a cap.
Solving for the strike rate that yields a combined value of zero, we have

NAD
Z( ‘“} SC P (1), (1)
2\~ )% s
~ mlovap
2( NT;“}ZSC P(1)
=0 1

The Lognormal Model. The lognormal model assumes that interest rates
follow the same stochastic process as stock prices in the Black-Scholes frame-
work. In our notation, the stochastic differential equation can be expressed as

dr = w(Hrdt + ordz,

01‘9

din(r) = [u(t) - g] dt + odz.

9This equivalence can be verified by a direct application of Ito’s lemma.
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One advantage of this approach is that negative interest rates are not
possible. Another advantage is that interest rate volatility is proportional to
rate level. Hence, in a high-rate environment, interest rates are more volatile
on an absolute basis than they are in a low-rate environment. This relationship
appears reasonable based on historical observation.

One disadvantage of this method is that it ignores the strong mean-
reverting tendencies of interest rates. The standard deviation is proportional
to the level of interest rates but is still independent of time.

The lognormal model implicitly contains assumptions regarding the term
structure of volatilities. As will be illustrated with Eurodellar futures (EDF)
data, forward rate volatility is not constant across the term structure; rather,
it declines. The economic intuition is that current information will affect
current rates to a greater degree than longer dated forward rates. What does
the current employment number say about three-month interest rates 10 years
out? For example, on March 8, 1996 (a day when a high employment number
was announced), the March 1997 EDF was up 59 basis points in rate whereas
the March 2005 EDF was up only 26 basis points.

Again, the no-arbitrage condition requires that the sum of the state claims
equal the observable risk-free zero-coupon bond price. The free variable,
given equally probable up- and down-jumps, is the drift rate. In this case, the
volatility measure is proportional, and we chose 20 percent (1%/0.05).
Because of the lognormality assumption, the up- and down-jumps, respec-
tively, are represented as

ran (D) = r/ (1) explu'(ss) + 6.4/is]

and

rl_”fl(l) = r(1) expp/(ts) - o4ts].

The first-year drift term is found to be 2.99463 percent, and the second-year
drift term is —0.72527 percent. Note that the expected future spot rates, under
the risk-neutral probability measure, are 5.2554 percent for Year 2 and 5.3221
percent for Year 3.1 The expected one-period spot prices are $0.948854 and
$0.94828, respectively. Figure 3 illustrates the first three points in time (¢=0,1,2)
based on the lognormal model.

Although this rate tree is distinctly different from that generated by the
Ho and Lee model, the value of 2 portfolio that is long a cap and short a floor
is zero at the equilibrium swap rate; that is, (recall we used discrete rates)

105,2554% = 0.50(6.2927%) + 0.50(4.2181%), and 5.3221% = 0.25(7.6303%) + 0.50(5.1148%) +
0.25(3.4285%). Recall that a spot rate observed at a point in Time 1 is for Period 2.
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CAP(5.3145%, 3-year) = 0.475615(0.93901) (0.064949 - 0.053145) (Time 1, State 1)
+0.22330(0.92654) (0.079319 - 0.053145) (Time 2, State 2)
=(.005272 + 0.005415
= 1.0687% of NP,
and

FLR(5.3145%, 3-year) = $1.0(0.951229) (0.053145 - 0.051271) (Time 0, State 0)
+0.475615(0.95870) (0.053145 - 0.043083) (Time 1, State 0}
+0.22799(0.96630) (0.053145 - 0.034880) (Time 2, State 0)
+0.45129(0.95014) (0.053145 - 0.052479) (Time 2, State 1)
= (.001783 + 0.004588 + 0.004024 + 0.000286
= 1.0681% of NP.

Figure 3. Binomial Lattice: Lognormal Mode!

#2(1) = 7.6303%
P;(1) = $0.92654

(1) = 6.2927%
SC}=$0.22330

P (1) = $0.93901
r (1) =5% 5C = $0.475615 r2(1) = 5.1148%
Py (1) = $0.95123 P{(1) = $0.95014

SCO=81 7o (1) = 4.2181% SC 2= $0.45129
0~ 1 = .
Py (1) = $0.95870

SC }=$0.475615 7,(1) = 3.4285%
Py (1) = $0.96630
SC 2= $0.22799

Recall that the value of a swap depends on the market forward rates and
not on volatility. Hence, the interest rate model used to incorporate volatility
should leave the value of the swap unchanged. The value attributed to volatility
in the cap market is priced such that it equals the value attributed to volatility
in the floor market. Therefore, all of the interest rate models developed here
will yield the same equilibrium swap rates.

The Black, Derman, and Toy Model. Black, Derman, and Toy (1990)
adopted a lognormal distribution that allows explicitly for time-varying rate
volatility. Specifically, the stochastic differential equation can be expressed as

dr=u@rdt + c()rdz,
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where £ allows for these parameters to be different across the term structure.
Hence, the current term structure of volatilities, ¢ (f), and the current term
structure of interest rates, u(#), are taken as inputs. This increased flexibility
has made this model popular. We used this model when we explicitly
evaluated the risk premium.

With time-varying volatilities, the binomial tree does not naturally recom-
bine. Hence, care must be taken to force it to do so. Three ohservations are
made to recombine the tree (assuming g = 1/2). First, the current zero-coupon
bond prices must be obtained. Second, the volatility at each node at the same
point in time must be the same; that is, the model assumes time-varying but
not state-varying volatility. Third, the current term structure of volatility is
given. With these three observations, the tree can be made to recombine and
satisfy the original inputs.

The up- and down-jumps, respectively, are expressed as

r2H ) = r(1) explp'(es) + 67 Jis]
and

,l_f+1(1) = r/(1) explp'(ts) — o' Vs,

where the ¢t superscript denotes time. Time-varying volatility offers no
assurance that the middle node at £ = 2 will recombine. To force this resuit (to
avoid an exploding tree), we allowed for different drift rates in the two subtrees
emanating out of Time 1. We could construct the tree by jointly solving for the
two drift rates and requiring the middle node to recombine. We assumed o!
equals 20 percent and o2 equals 18 percent.

The first-year drift termis 2.99463 percent, and the second-year drift terms
are —2.03431 percent (up) and 1.96569 percent (down). Note that the expected
future spotrates under the risk-neutral probability measure are 5.2554 percent
and 5.3189 percent, respectively.l! The expected one-period spot prices are
$0.948854 and $0.94829, respectively. Figure 4 illustrates the first three points
in time (¢ = 0,1,2) based on the Black, Derman, and Toy model.

Again, the cap equals the floor when the strike rate equals the equilibrium
swap rate; that is,

CAP(5.3145%, 3-year) = 0.475615(0.93901) (0.064949 — 0.053145) (Time 1, State 1)

+0.22330(0.92884) (0.076613 - 0.053145) (Time 2, State 2)
= 0.005272 + 0.004867
=1.0139% of NP,

115 2554% = 0.50 (6.2927%) + 0.50(4.2181%), and 5.3189% ~ 0.25(7.3820%) + 0.50(5.1502%) +
0.25(3.5932%).
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and

FLR(5.3145%, 3-year) = $1.0(0.951229) (0.053145 - 0.051271) (Time 0, State 0)
+0.475615(0.95870) (0.053145-0.043083) (Time 1, State 0)
+0.22799(0.96471) (0.053145 - 0.036585) (Time 2, State 0)
+0.45129(0.94980) (0.053145 - 0.052851) (Time 2, State 1)
=0.001783 + 0.004588 + 0.003642 + 0.000126
=1.0139% of NP.

Figure 4. Binomial Lattice: Biack, Derman, and Toy Model

r}(1) = 7.3820%
P;(1) = $0.92884

71 (1) = 6.2927%
SC ;= $0.22330

P, (1) = $0.93901

r (1) =5% SC = $0.475615 r}(1) = 5.1502%
P, (1) = $0.95123 P{(1) = $0.94980
. r(1) = 4.2181%
SCo=$1 SC 2= $0.45129
P, (1) = $0.95870
SC ! = $0.475615 75(1) = 3.5932%

Py (1) = $0.96471
SC 2= $0.22799

The Black and Karasinski Model. Black and Karasinski (1991) extended
the work of Black, Derman, and Toy by explicitly incorporating a mean-
reversion parameter, k. Black, Derman, and Toy took the term structure of
interest rates and the term structure of volatilities as observable values. Black
and Karasinski also took these values as observables, but they needed one
additional value to parameterize the mean-eversion parameter. They as-
sumed the availability of a complete set of at-the-money caps. The stochastic
differential equation can be expressed as

dr = x(){In[p($)] = In[r(¢)] }rdt + o(t)rdz.

Once again, care must be taken to assure that the binomial tree recom-
bines. One way to accomplish this recombination is to allow the time step to
vary. That is, the time step is selected to satisfy the restriction on kappa as
well as to assure that up-then-down leads to the same place as down-then-up.
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abcBourselr, 0 @b cBoursei U5 ) se lehe =B


http://abcbourse.ir/

Interest Rate Modeling and the Risk Premiums in Interest Rate Swaps

The up- and down-jumps, respectively, are as follows:
Py = (Dexp{xTin(w’) - () 1(1s) + 6' s }
and

r 1) = r(exp{x/TIn(n") ~ In(+) I(ts) - o' s }.

The Hull and White Model. Hull and White (1996) demonstrated that their
general framework is widely applicable. Their trinomizal tree is similar to the
binomial tree except the trinomial version has three arcs at each node. Their
general stochastic differential equation is (where x could be 7 or any cother
factor)

dx = a[m wx] dt + cdz.

a

If x equals log(»), ¢ equals «(f), and ¢ equals ¢(¢), we have the Black and
Karasinski model. If x equals log (#) and a () equals -6'(f) /o (), then we have
the Black, Derman, and Toy model.

The choice of probability of up-, middle-, and down-jumps is constrained
to be related to the size of the jumps. Hull and White adopted a method that
keeps all the vertical distances between each node equal. (For more details,
see Hull and White and references therein.)

The Heath, Jarrow, and Morton Model. The Heath, Jarrow, and Morton
(1992) model allows each forward rate to change based on its own sensitivities
to the underlying factors. Thus, the term structure can twist and turn in a wide
variety of ways. The initial inputs consist of forward rates and forward rate
volatilities. With these inputs correctly specified, one can derive the appropri-
ate spot rate process, as well as the stochastic process, for bond prices. The
stochastic differential equation of the family of forward rates can be expressed
as

1 n 1
TY = [u, Twydv+ Y. [o,(0, T, ) dw,(v).
0 i=1 0
The level of complexity is clearly related to the number of factors required to
appropriately specify the stochastic behavior of the term structure. (For
further explanation of the details, see Jarrow 1996.)
The Ritchken and Sankarasubramanian Model. By transforming the
Heath, Jarrow, and Morton spot rate process, Ritchken and Sankarasubrama-
nian (1995) and Li, Ritchken, and Sankarasubramanian (1995) demonstrated
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that the transformed process can be modeled with a binomial lattice. Hence,
they were able to keep track of the entire term structure contained within a
binomial lattice. By assuming the following functional form for volatility, the
actual volatility curve cannot be fit exactly:

of Gj+ 1) =ori)'e,
where yis a power term on the spot rate governing the sensitivity of volatility
to the spot rate level and x is a constant that governs the exponential

dampening of volatility across maturity. Ritchken and Sankarasubramanian
showed that the spot rate process is given by
dr=u(, o, D di + or'(Ydw(t),
where
0

3
h(r 6,0 = s17°0 - (01+ S g,

and
do) = {o?[r' (D] - 2xp () }dt,

where £°(f) is the value of a forward rate starting at ¢ and observed at¢ =0 and
the other variables are as previously defined. (For more details on
implementing this model, see Ritchken 1996.)

Pricing versus Applying Interest Rate Swaps. Our empirical re-
search focuses primarily on the consequences of using interest rate swaps
rather than on pricing them, but the way interest rate swaps are priced is
directly linked to whether they are applied in a particular circumstance.
Interest rate swaps are usually explained following three steps. Campbell and
Kracaw (1993) defined the procedure as follows:

Step 1. Determine the best guess of the floating rate applicable to each future

settlement date in the swap.

Step 2. Use the zero-coupon vield curve to calculate the present value of the

expected future floating-rate payments under the swap.

Step 3. Calculate the annuity that has the same present value as determined

in Step 2.

The most difficult task in interest rate swap valuation is Step 1, determining
the appropriate values related to the future floating-rate cash flows. Campbell
and Kracaw explained,

... we know that the market’s best guess of these rates (the floating rates)

is embedded in long-term rates or in the yield curve. Hence, we can turn to

the yield curve and extract the implied forward rates for each settlement

date. We know . . . that the forward rate contains the market’s best guess of

the future spot rate, though it may also contain a liquidity premium.
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To further delineate this general approach to valuing interest rate swaps,
Dattatreya (1992) stated,
.. . as far as valuation is concerned, we are indifferent between the unknown
floating-rate cash flows or the known cash flows represented by forward
rates. Once the floating side has been so “fixed,” its present value is first
computed simply by discounting each flow to the present. The swap rate can
then be easily computed by determining that fixed-rate which will have the
same discounted present value as the floating side.
The key phrase here is “as far as valuation is concerned.” Dealers in forward
rate agreements (FRAs)—the building blocks fo valuing swaps—know that
the cost to hedge a particular future floatingrate exposure is the current
forward rate. The main focus of our research, therefore, is on the behavior of
FRAs. Specifically, are there theoretical reasons that FRAs can deviate
substantially from the expected future spot rate? If potential deviations exist,
what has been their magnitude historically? Obviously, large deviations of
FRA rates from the expected future spot rate will result in interest rate swaps,
on average, having a nonzero expected return.

Two different costs are related to interest rate swaps. The first cost is the
deviation of the market FRA rate from the expected spot rate. Considerable
evidence suggests that, in fact, market FRA rates deviate, at least at times,
from the expected spot rate. For example, Ho (1995) observed that

... during 1993, the yield curve was historically steep (positively sloped). As

a result, forward rates rose rapidly with maturity. Many investment profes-

sionals attributed the steepness of the curve to a significant imbalance of

supply and demand in the bond market, and they, therefore, viewed the
forward rates as very poor predictors of the rates that would be realized in

the future.

Because interest rate swaps are valued based on arbitrage with FRAs, if
the above observation is true, then in 1993, receive-fixed interest rate swaps
offered significant return opportunities and receive-floating interest rate
swaps would prove very costly. That is, in 1993, a speculator could have
profited tremendously by just entering a receive-fixed interest rate swap (of
course, short-term interest rates did run up in 1994).

The second cost related to interest rate swaps is the deviation of the
investor’s view from the FRA. That is, the current FRA fixed rate may be 8.0
percent, but the investor believes this rate will subsequently be 6.0 percent.
Thus, the FRA may be biased 50 basis points higher than the expected future
spot rate of, say, 7.5 percent, but an investor would still bear the cost of 150
basis points in expected return by hedging a floating-rate exposure with an
FRA. Ho expressed this second cost in the context of interest rate options as
follows: “...when the forward curve differs from the investors’ predicted rates,

»»

part of the cost of the interest rate option value is the ‘hedge cost’.
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Although this second cost is vitally important when using interest rate
swaps, we focused only on the first cost, the cost of any bias in FRAs embedded
in interest rate swaps.

The Risk Premium within the Term Structure of Interest

Rates

The traditional methods for valuing interest rate contingent claims in a
multiperiod, discrete-time setting involve replacing actual probabilities with
“risk-neutral” or “pseudo” probabilities.l? For our objectives, this step is
extremely important, especially if a firm’s aversion to interest rate risk is
distinctly different from the one implied by market equilibrium.

For example, a life insurance company with long-maturity liabilities may
actually preferto invest in long-maturity assets, and overall market equilibrium
results in longer maturity assets receiving a higher yield. Market equilibrium
may result in a rising forward curve, even though interest rates are not
expected to change, because of a risk premium. In this case, the risk premium
is paid to investors willing to hold long-maturity, fixed-rate debt. Thus, even
though no arbitrage exists under risk-neutral valuation, different market
participants will have very clear preferences regarding their own particular
strategy.

Building upon the Black, Derman, and Toy model, we assumed that the
datafor five years, presented in Table 2, are currently observable in the market
(or are beliefs held by a market participant). Setting the drift terms so that the
tree recombines, making sure that the sum of the state claims equals the initial
zero-coupon bond price, and achieving the appropriate level of local volatility,
we found the rate tree and related statistics shown in Table 3.1° The subjective
probability of an up-jump was derived so that the original expected rate would
be matched. For example, assuming a 37.68996 percent chance of an up-jump
in the first time step, produces

6.2927(0.3768996) + 4.2181(1 - 0.3768996) = 5.0 percent.

Thus, the subjective probabilities are applied to the risk-neutral rate tree. The
important observation at this point is that nothing is logically inconsistent with
expected rates deviating from either forward rates or expected rates under a
risk-neutral probability measure. This rate tree permits calculation of the state
claims shown in Table 4.

12Gee, for example, Jarrow (1996) or Ritchken (1996).
BLocal volatility is In[r,"(1)/7-1(1) J/2.
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Table 2. Hypothetical Five-Year Data

Inputs Cutputs
Maturity Expected Forward Zero-Coupon  Forward
(years) Rate Rate Volatility Price Price Swap Rate
0 5.0% 5.00% 0.0% - — —
1 5.0 5.25 20.0 $0.951229  $0.851229 5.12711%
2 5.0 5.30 18.0 0.902578 (.948854 5.25523
3 5.0 5.33 17.0 0.855987 0.948380 5.31453
4 5.0 5.35 16.0 0.811558 0.948096 5.35142
5 0.769280 0.947906 5.37729

Table 3. Hypothetical Rate Tree and Related Statistics by Time Point

State 0 1 2 3 4

0 5.0000% 6.2927% 7.3820% 8.5637% 9.7571%
1 4.2181 5.1502 6.0954 7.0851
2 3.5932 4.3385 5.1449
3 3.0880 3.7359
4 2.7129

Probability of upjump  37.68996 45.26836 46.21416 46.08812

Expected rates
Subjective 5.0000 5.0000 5.0000 5.0000 5.0000
Risk-neutral 5.0000 5.2554 5.3189 5.3692 5.4140

Table 4. Hypothetical State Claims by Time Point

State 0 1 2 3 4

0 $1.00000 $0.47561 $0.22330 $0.10371 $0.04760
1 0.47561 0.45129 0.31802 0.19721
2 0.22799 0.32429 0.30487
3 0.10997 0.20857
4 0.05331
Sum $1.00000 0.95123 0.90258 0.85599 0.81156

By design, the sum of the state claims equals the zero-coupon bond price.
To consider the impact of a risk premium, we examined the cash flows from
a receive-fixed, pay-floating, five-year interest rate swap. From Table 2, the
equilibrium five-year swap rate is 5.37729 percent (discretely compounded).
Table 5 gives the actual cash flows (discounted one period because we assume
settlement in arrears) from this swap for each state at each point in time
assuming annual resets and S$1 million in notional principal.
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Table 5. Hypothetical Cash Flows by Time Point

State 0 1 2 3 4

0 $2,379.80  $-10,494.19 $-21,214.51 $-32,712.67 $-44,188.42
1 10,248.15 875.07 -8,539.99 -18,304.83
2 16,581.01 9,032.53 928.72
3 21,729.55 15,130.89
4 25,569.91

For example, the single-period rate at t = 0 is 5.12711 percent (discrete).
The swap pays the difference between the swap rate and the single-period rate
settled in arrears. Thus, the difference (5.37729% — 5.12711%) must be dis-
counted based on the current one-period bond price of $0.951229. Because we
assume $1 million notional principal, we have

$1,000,000 ($0.1951229) (0.0537729 - 0.0512711) = $2,379.80.

A brief glance at the hypothetical cash flows may lead to the conclusion
that, in fact, interest rate swaps are “fair” in the sense that sometimes you lose
and sometimes you win. This analysis, however, quickly changes once you
consider the subjective probabilities of each outcome. Table 6 gives both the
subjective probabilities and the risk-neutral probabilities. For each case, the
expected cash flows for each point in time are computed along with the sum
of the expected cash flows.

Table 6. Hypothetical Cash Fliows and Expected Cash Flows by

Time Point
State 0 1 2 3 4
Subjective probabilities
0 100.0000% 37.6500% 17.0616% 7.8849% 3.6340%
1 62.3100 48.8351 31.7455 18.8818
2 34.1033 42.0269 36.4840
3 18.3428 31.1113
4 9.8889
Risk-neutral
probabilities
0 100.0000 50.0000 25.0000 12.5000 6.2500
1 50.0000 50.0000 37.5000 25.0000
2 25.0000 37.5000 37.5000
3 12.5000 25.0000
4 6.2500
Expected cash flows
from five-year swap
Subjective $2,379.80 $2,430.37 $2,462.47 $2,491.48 $2,512.76
Risk-neutral 2,379.80 -123.02 -720.84 -1,188.19 -1,608.87
24 ©The Research Foundation of the ICFA
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Table 6is extremely revealing. For example, consider a firm that will soon
issue either floating-rate debt or five-year, fixed-rate debt. The realization that
issuing fixed-rate debt will cost, on average per year, 23-25 basis points more
than issuing floating-rate debt may alter the firm’s decision. In this context,
understanding how higher rates affect the firm is important. For example, if
the firm has a low debt-to-asset ratio, a strong profit margin, and sales that are
not sensitive to inferest rates, then 25 basis points may be too much to pay to
fix its interest cost for five years. A highly leveraged, rate-sensitive firm,
however, may prefer to lock in the fixed rate despite the premium.

The Empirical Evidence

The magnitude of the risk premium within the existing term structure of
interest rates is an empirical issue. We examined historical data on the
Eurodollar cash and futures markets. LIBOR has emerged as the interest rate
of choice among swap dealers, largely because of its close relationship to the
dealers’ cost of funds and its high level of liquidity. The EDF markets are a
good proxy for forward rates for short-maturity contracts.

The primary data cover the period October 21, 1986, to March 29, 1996,
with daily observations on three-month LIBOR and the first eight 90-day EDF
contract settle prices. The data also include monthly observations on the (all
urban, not seasonally adjusted) consumer price index (CPI).

Figure 5 illustrates cash LIBOR and a one-year moving average of the CPI
for the entire sample period. LIBOR started and ended this period at about 6
percent. The latter part of the 1980s exhibited higher and more volatile rates
than did the early 1990s. The highest rate during this period was 10.625 percent
on March 21, 1989, and the lowest rate was 3.125 percent on Gctober 2, 1992.

Although inflation and interest rates are clearly related, they are far from
perfectly correlated: The correlation coefficient for this period was 0.66. Of
course, interest rates are forward looking, whereas inflation rates are histori-
cal. The average three-month LIBOR rate was 6.27 percent with a standard
deviation of 32 percent (annualized), and the average CPI percentage change
was 3.65 percent with a standard deviation of 17.7 percent (annualized).

Eurodollar Futures and Interest Rate Swaps. One result of the
marking-to-market feature of EDFs is that the implied futures rate deviates
from the forward rate. Because our primary data are on EDFs and our focus
is interest rate swaps, we examined the magnitude of this difference.
Burghardt and Hoskins (1994, 1995a, 1995b) and Meulbroek (1992), among
others, have studied this financing bias (the EDF gains are invested and losses
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Figure 5. Cash Three-Month LIBOR and Percentage Change in the
Consumer Price Index, QOctober 21, 1986, to March 29, 1996
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must be financed because of the daily mark to market) or the convexity bias
(interest rate swap values have a convex relationship to interest rates because
they are not marked to market). Changes in interest rates have the same effect
on interest rate swaps as they do on regular bonds; that effect is negative with
positive convexity. The relationship between interest rates and EDFs is linear,
$25.00 per basis point per contract.

Our objective was not to reassess this bias but to evaluate its effect.
Although Burghardt and Hoskins (1995a) asserted that “the bias can be
huge,” they focused on long-dated interest rate swaps. For two-year swap
rates, the convexity bias accounts for approximately 3 basis points in the swap
rate, and for an individual forward rate agreement, the convexity bias is
approximately 1 basis point. The empirical evidence indicates that the histor-
ical premium in two-year swap rates has been roughly 50 basis points. We
used EDF data because of its high liquidity and precision, but we chose to
ignore the convexity bias because it is a relatively minor factor for the issue
we addressed. Also, when market participants became aware of this bias is
unclear.

fllustrations of the Risk Premium. We illustrate here the relationship
between cash LIBOR and the rate implied by an EDF (sometimes called the
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basis) over a two-year period. We selected two time periods: one when LIBOR
rates were rising (June 1993 to June 1995) and one when rates were falling
(Tune 1991 to June 1993).

Figure 6 is particularly interesting because of the behavior of the EDF.
Between June 1993 and June 1995, cash LIBOR rose from the low 3 percent
range to the 6 percent range. The unbiased expectations hypothesis would
assert that an unbiased forecast of the three-month LIBOR rate in June 1995
would be the forward rate implied in the 6/95 EDF contract observed in June
1993. We might be tempted to argue that in June 1993, the 6/95 EDF was a
fairly good predictor of three-month LIBOR in June 1995. During this two-year
period, the estimates were at times too low and at other times too high, but
on average, the forecasts were fairly accurate, which is not usually the case.
An alternative explanation would be that rates rose higher than expected so
the risk premium was dissipating. The convergence of the futures rate to cash
LIBOR is rapid during the last 90 days of the contract. Hence, we argue that
the EDF rate two years out contains at least two major factors: the market’s
forecast of rates and a risk premium.

Figure 6. lilustration of Basis, June 1993 to June 1.9%5
9
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Figure 7 illustrates the same phenomenon for June 1991 to June 1993
except that cash LIBOR rates were generally falling. In June 1991, an unbiased
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forecast of LIBOR in June 1993 was 8.5 percent. Figure 7 illustrates the typical
pattern of a dissipating risk premium.

Figure 7. Illustration of Basis, June 1991 to June 1993
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Analysis of Overall Period. This section presents an analysis of the
average forward rate implied by the EDF data, rate volatility and related
factors, the swap premium, and the behavior of the basis average by weeks to
maturity. The period of observation is October 21, 1986, to March 29, 1996.

The data consist of the daily cash LIBOR rates and settle prices for eight
EDFs. For the “nearby” EDF (closest to maturity on the observation date),
the days to maturity range anywhere from 1 day to about 92 days. Hence, the
nearby EDF rate is observed, on average, one-half a quarter (46 days) from
maturity.

Figure 8 illustrates the average rates implied by the eight EDF contracts
during the entire study period. The average forward rates start at 6.3 percent
for the nearby contract and rise monotonically to 7.6 percent for the eighth
contract. In terms of historical forward rates, the difference between the
nearby contract and the two-year contract has been 130 basis points.

The difference between rates is 13 basis points between the first and
second contracts, 19 basis points between the second and third, 23 basis points
between the fourth and fifth, and 15 basis points for the seventh and eighth
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Figure 8. Average Quarterly Forward Curve, October 21, 1986, to
March 22, 1996
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contracts. A standard one-tailed #test indicates that each nearby pair of
quarterly bases is statistically different at the 1 percent level, which is strong
evidence in favor of a significantly positive basis. Thus, the risk premium
clearly is a function of maturity.

Figure 9 illustrates the behavior of the annualized standard deviation in
percentage (volatility) of these eight EDF contracts and cash LIBOR. 14 The
volatility is clearly a declining function of maturity. Also, the relationship
appears to be nonlinear. Hence, the leveling out of volatility is consistent with
the leveling out of the average forward rates.

To isolate the factors leading to declining volatility, we considered the
following representation of the ith forward rate:

fo= ot 25 = fo+ 2,
j=i j=1
where f;is cash LIBOR and s denotes the difference between nearby forward
rates, or a spread. The ith forward rate can be viewed as cash LIBOR plus the

14The daily standard deviation was computed and multiplied by the square root of 252, the
annual number of trading days.
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Figure 9. Volatility of Forward Qurve, Octobar 21, 1986, tc March 29,
1996
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incremental spread between forward rates moving out on the term structure.
Thus, the variance of the ith forward rate can be expressed as

,« = ﬁjo+ 20‘ +20f20 L 22 2 6.0 Psivsi
i=1 j=i+l
where 02,(0 denotes the variance of cash LIBOR, o is the standard deviation,
and p is the relevant correlations.

Table 7 provides the statistics necessary to decompose the variance of the
ith forward rate into its component parts. The average spread rises and then
falls. The standard deviation peaks at Quarter 2 and monotonically declines
thereafter. Also, the spreads are not highly correlated. Hence, the more-
distant forward rates are less volatile than the nearer rates, partly because of
this portfolio effect. That is, the forward rate can be viewed as a portfolio of
cash LIBOR and spreads. The negative correlation between cash LIBOR and
the spread is intuitive; when interest rates are high, on average, the term
structure is flatter (perhaps because participants expect rates to fall).
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Table 7. Statisticson LIBOR and Quarterly Spread (First Difference)
on the Bagis, October 21, 1986, to March 29, 1996

LIBOR 1 2 3 4 5 6 7 8
Average 6.265% 0.031% 0.139% 0.188% 0.216% 0.226% 0.203% 0.174% 0.152%
Standard
deviation 3158 336 4.71 3.24 2.57 2.59 247 2.19 2.08
Correlations

LIBOR 100 -020 -033 048 057 060 063 -059 059

1 100 060 043 0.15 001 005 -003 010
2 100 063 0.44 012 027  -0004 004
3 1.00 0.52 047 029 0.57 0.13
4 1.00 057 0.60 0.41 0.73
5 100  0.62 0.66 0.48
6 1.00 0.60 0.68
7 1.00 0.58
8 1.00

To understand how rising forward rates affect swap rates, we estimated
the swap curve based on the average forward rates. We approximated the
quarterly forward rates by linear interpolation. Table 8 presents the results of
this analysis. The second column presents average quarterly forward rates
based on this data set. The first quarter was based on the average cash LIBOR
rate. We assumed that the nearest EDF was, on average, one-half of a quarter
from maturity and that the second nearest EDF was one and a half quarters
from maturity. Using linear interpolation, we computed the average forward
rate for a one-quarter maturity contract. The third column presents the swap
rates using the same valuation approach described earlier. The fourth column
presents the swap premium measured as the difference between the swap rate
and the average LIBOR rate (Quarter 1 forward rate of 6.27 percent). The fifth
column lists the annual savings from entering a receive-fixed and pay-floating
interest rate swap per $1 million notional principal (which translates into
$100.00 times the swap premium). ™ A rising forward curve translates directly
into a rising swap curve. With a consistently rising swap curve, swaps are a
nonzero average payoff transaction when a risk premium exists.

For example, consider a large corporation that will maintain the duration
of its liabilities either at about three months or at two years. The longer-
duration strategy provides more stability for the firm, but it is costly in the
long run. Table 8 shows that the average cost is 57.6 basis points, or $5,760.00
per $1 million. Instead of locking in 6.84 percent for the two years (via the

15The numbers are slightly different because of rounding of the swap premium.
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swap), the corporation could have paid an average of 6.27 percent for this
period. Historically, firms would have been much better off by issuing floating-
rate debt as opposed to fixed-rate debt if the debt could have been issued at a
constant spread to LIBOR. This conclusion obviously assumes that interest
rates cannot be forecast and that issuance costs are approximately the same
for each type of debt.

Table 8. Swap Curve Derived from Average Futures Rates, October 21,

1286, to March 29, 1296
Swap Premium § Savings
Quarier Forward Rate Swap Rate (basis points) (81 million/year)
i 6.27% 6.27% 0.0 $§ 0
2 6.53 6.32 48 483
3 8.73 6.39 11.8 1,179
4 8.95 5.47 20.3 2,026
5 7.17 5.56 29.6 2,955
6 7.35 6.66 39.2 3,915
7 7.52 6.75 48.6 4,856
8 7.67 6.84 576 5,760

To understand the risk premium (futures rate minus the expected spot
rate) better, we examined the basis (futures rate minus the current spot rate)
on a weekly basis. On any given day, if the nearest EDF contract matures in
less than 7 days, all eight EDFs are classified as being in the first week; if it
matures in less than 14 days (but more than 7 days), then they are in the
second week. Figure 10 illustrates the average basis for the 13 weeks in a
quarter for the eight contracts—from the nearest contract at the bottom of the
graph to the farthest at the top. Notice that the basis increases from Week 1
to Week 13. The nearest contract has an average of 10 basis points in the 13th
week; the second nearest has 30 basis points, a difference of 20 basis points.
The difference between the seventh and eighth contracts is only 12 basis
points in the 13th week. Figure 10 provides strong evidence of a dissipating
risk premium, although the rate of dissipation is not constant.

Figure 11 illustrates the standard deviation of the basis by week to
maturity. The standard deviation and the average basis are clearly directly
related. The rapid increase in the basis for the nearby contract corresponds
to arapid increase in standard deviation. This observation supports the notion
that the risk premium is related to the corresponding risk.

Figure 12 illustrates the positive relationship between the average basis
and the standard deviation of the basis. For the longer maturities, the results
are clustered based on the specific quarterly contract. Figure 12 presents
strong evidence that the basis is, in fact, compensation for risk bearing, if risk
is measured as the standard deviation.
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Figure 10. Average Weekly Basis for Eight EDF Contracts, October 21,
1386, to March 29, 1996

150
140 -
130
120
110
100
90
80
70
60
50 .
40 -
30 o

10 M e
0r L ! | i ( | ! o TTTTT———]

13 12 11 10 9 8 7 6 5 4 3 2 1

Basis

Analysis of Subperiods. Figure 13 illustrates the average daily basis by
year (excluding partial years 1996 and 1986), again with the nearest contract
on the bottom. With the exception of 1989 and 1990, the pattern consistently
shows an increasing basis for longer maturity EDF contracts. In the years 1989
and 1990, rates initially were relatively high but fell sharply over the year.
Figure 13 provides strong support for the assertion that a receive-fixed, pay-
floating interest rate swap is a positive-dollar-return proposition.

Figure 14 illustrates the standard deviation of the basis by year. This
pattern is much less consistent than that for the basis itself. For the whole
period, the standard deviation is monotonically increasing, but for many years,
this relationship does not hold.

Table 9 helps interpret the information contained in Figures 13 and 14,
This table provides some statistics, including the R? of a time-series regres-
sion, by year, for cash LIBOR. For example, in 1994, cash LIBOR rose from
3.4 percent at the beginning of the year to 6.5 percent at the end of the year.,
An R? of 0.92 suggests that the trend was nearly linear—92 percent of the
variation is explained by time. A glance back at Figure 5 confirms this result.

©The Research Foundation of the ICFA 33

abcBourselr, N @b cBoursetiY-)5N)se [ FieE



http://abcbourse.ir/

Interest Rate Modeling and the Risk Premiums in Intevest Rate Swaps

Figure 11. Standard Deviation of Weekly Basls for Eight EDF
Contracts, October 21, 1986, to March 29, 1996
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As Figure 13 shows, even in a strongly rising interest rate market, such as
1994, the average basis is monotonically increasing. In 1993, the market was
trendless (R% 0f0.23 in Table 9), yet the basis is still monotonically increasing.
In 1992, the interest rate market fell sharply and had more volatility than the
rising market of 1994; the basis is also monotonically increasing. The rising
markets of 1987 and 1988 also record the consistently increasing basis.

Table 10 examines the average basis by calendar month. The average
basis is the lowest in the last three months of the year and the highest in
January, March, and April. The largest month-to-month change in the average
basis for the eighth EDF contract (eight quarters to maturity) is December to
January, for which the average basis rises from 112 to 154. After April, the
basis falls steadily until the end of the year.

Summary

This study addressed the return side of the decision to use either interest rate
swaps or other interest rate contingent claims. On average, the receive-fixed
interest rate swap resulted in net receipts during the sample period. The U.S.
interest rate market offers a significant risk premium. Thus, the decision to
use interest rate swaps has a direct consequence for expected return.
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Figure 12. Analysis of Weekly Basis, October 21, 1986, to March 29,

1996
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Using the Black, Derman, and Toy (1990) model, we illustrated theoreti-
cally the economic consequences of a risk premium. The risk premium is
defined as the difference between the current forward rate and the expected
future spot rate. Through a numerical example, we showed how an at-market
swap with the existence of a risk premium can have a significant impact on
the expected return from using the swap. The main insight is that whereas
valuation is based on “risk-neutral,” no-arbitrage relationships, expected
returns are based on subjective probabilities (unadjusted for risk).

Considerable evidence favors a dissipating risk premium. The average
forward rate implied in Eurodollar futures rises with maturity. Specifically,
during this entire period, the difference between the shortest maturity
contract and the two-year contract was 130 basis points. Second, the dissipat-
ing risk premium appears to be a nonlinear function of maturity, and most of
the dissipation occurs between six months to one and a half years to maturity.
This finding correspends to anecdotal evidence of a humped forward volatil-
ity curve observed frequently in the cap-and-floor market. An analysis of
subperiods reveals that these results are fairly consistent over time,
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Figure 13. Average Daily Basis by Year
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Figure 14. Standard Deviation of Basis by Year
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Table 9. Analysis of Cash LIBOR by Calendar Year
Standard High minus Open minus

Year Open High Low Close Average Deviation Low Close R?
1987 63% 9.3% 6.1% 74% 7.2% 0.65% 3.2% -1.1% 0.70
1988 7.4 96 66 93 8.0 0.84 3.0 -1.9 0.91
1989 93 106 83 84 9.3 0.60 23 0.9 0.65
1990 84 88 76 716 83 0.21 1.2 0.8 045
1991 7.6 77 43 43 6.0 0.72 34 33 091
1992 42 44 31 34 38 0.37 i3 0.8 0.56
1993 34 35 32 34 33 0.09 0.3 0.1 0.23
1994 34 65 33 65 48 0.90 33 -3.1 0.92
1995 6.5 65 56 56 6.0 0.19 0.9 0.9 0.80
Average 63 74 53 62 6.3 0.5 21 0.1 0.70

Table 10. Average Monthily Basis by EDF Contract, January 1987 through

December 1995

Month 1 2 3 4 5 6 7 8
January 6 23 45 77 90 112 130 154
February 5 21 41 72 86 107 126 149
March 14 35 61 80 96 115 135 148
April 15 39 72 85 107 126 150 157
May 5 28 60 73 96 117 141 147
June 3 25 46 62 85 107 123 133
July 2 28 35 58 81 110 119 136
August 1 25 31 54 79 110 120 135
September 7 21 34 56 84 104 116 131
October -2 —4 15 38 71 81 98 112
November -1 -11 8 31 63 75 95 110
December -6 -3 15 40 63 77 94 112
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